FALL 2014

AECN 832

ECONOMICS OF AGRICULTURAL PRODUCTION

FILLEY HALL, ROOM 302 TUESDAYS AND THURSDAYS 1:00-2:30 PM INSTRUCTOR: PROF. AZZEDDINE AZZAM

Purpose: This course is about how to use microeconmic principles for making agricultural production decisions. It is tailored for entering MS students in agricultural Economics and MS and PhD students in other agricultural sciences. The course employs Excel graphics and differential calculus. Familiarity with basic algebra is necessary. The necessary differential calculus is covered at the beginning of the course.

Reading Material:

Primary Textbook: David L. Debertin. *Agricultural Production Economics*, 2012. **Supplemental Textbook (for Ag Econ Students)**: Bruce R. Beattie, C. Robert Taylor, and Myles J. Watts. *The Economics of Production*. 2009.

Case studies (see page 3 of the syllabus).

Grading: Course grade will be assigned based on the following weights:

Assessment tool	Total points	Percent of grade	
10 take-home assignments	100	50%	
Midterm	100	20%	
Final	100	30%	
Total	300	100%	

Grading Scale: Course letter grades will be assigned based on the following scale:

Grade	Percentag of total points
A+	90-100
Α	80-90
B+	75-79
В	70-74
C+	65-69
С	60-64
D	50-59
F	<50

COURSE OUTLINE									
Day	Lecture	Reading ¹	Reading ²		Assessment tool	% of grade			
8/26	Introduction	Chapter 1	Chapter 1						
8/28	Review of univariate calculus	Hand out							
9/2	Review of multivariate calculus	Handout							
9/4	Review of constrained and unconstrained optimization	Handout		Та	ke-home assignment 1	5%			
9/9	Production with one variable input I	2	2						
9/11	Production with one variable input II	2	2						
9/16	Profit maximization with one input and one output I	3	3						
9/18	Profit maximization with one input and one output II	3 3		Take-home assignment 2		5%			
9/23	Costs, returns, and profits on the output side I	4	4						
9/25	Costs, returns, and profits on the output side II	4	4 4 Take-home assignment 3		5%				
9/30	Production with two inputs	5	4						
10/2	Maximization in the two input case	6	4						
10/7	Maximization subject to budget constraints	7	3						
10/9	Further topics in constrained optimization	8	3	Та	ke-home assignment 4	5%			
10/14	Returns to scale, homogenous function, and Euler's theorem I	9	2						
10/16	Returns to scale, homogenous function, and Euler's theorem II	9	2	Take-home assignment 5		5%			
10/21		No Class (Fall Bi	reak)						
10/23		MID TERM				20%			
10/28	The Cobb-Douglas Production function	1	0	2					
10/30	Other agricultural production functions	11		2					
11/4	Elasticity of substitution	12		2					
11/6	The demand for inputs in the production process I	13							
11/11	The demand for inputs in the production process II	13		3,4	Take-home assignment 6	5%			
11/13	Production of more than one product	15		5.1					
11/18	Maximization in a two output setting	16		5	Take-home assignment 7	5%			
11/20	Enterprise budgeting and marginal analysis I	19							
11/25	Enterprise budgeting and marginal analysis II	19			Take-home assignment 8	5%			
11/27		No Class (Thank	sgiving Vacation	ı)	·				
12/2	Linear programming and marginal analysis I	22							
12/4	Linear programming and marginal analysis II	22			Take-home assignment 9	5%			
12/9	Decision making in an environment of risk and uncertainty I	20							
12/11	Decision making in an environment of risk and uncertainty II	20			Take-home assignment 10	5%			
TBD					FINAL EXAM	30%			

¹ Readings from Debertin's textbook ² Readings from Beattie et al.'s textbook.

Bibliography³

- Azzam, A., M. Baker, I.Berry, and J. Campbell. "An Exploratory Bio-economic Model of Pesticide Use for Controlling Feedlot-cattle Pests." *Agricultural Systems* 48(1995):503-513.
- Azzam, S. and A. Azzam. "A Markovian Decision Model for Beef Cattle Replacement that Considers Spring and Fall Calving." *Journal of Animal Science* 69(1991):2329-2341.
- Azzam, A., S. M. Azzam, J. W. Keele, and J. F. Keown. "The Economic Value of Dairy Herd Improvement Information in a Sample of Midwestern Dairy Farms." *Journal of Dairy Science* 772(1989):1296-1301.
- Beckman, J., R. Keeney, and W. Tyner. "Feed Demands and Co-product Substitution in the Biofuel Era." *Agribusiness* 27(2011) :1-18.
- Garcia, A. and G. Taylor. Economics of Feeding Distillers Grains to Dairy Cows. South Dakota State University Cooperative Extensive Service, ExEx 245 Available at http://pubstorage.sdstate.edu/AgBio Publications/articles/ExEx4025.pdf
- Lawrence, J. *Optimal Marketing Weight for Fed Cattle*. Iowa Beef Center at Iowa State University. Available at <u>http://www.iowabeefcenter.org/Docs_econ/optimalweight.pdf</u>
- MacDonald, J. M. and W. D. McBride. *The Transformation of U.S. Livestock Agriculture: Scale, Efficiency, and Risks*. USDA-ERS, EIB 43, January 2009. Available at <u>http://www.ers.usda.gov/media/184977/eib43.pdf</u>
- Pashant A., M. Yu, and F. Ewell. "Economic Analysis of Optimal Nitrogen Application in Corn Production." The Texas Journal of Agriculture and Natural Resources 21(2008):101-108.
- Ray, S. "A Translog Cost Function Analysis of U.S. Agriculture, 1939-77." American Journal of Agricultural Economics 64(1982):490-498.
- Yao-Chi Lu, C. R. Camp, and E. J. Sadler. "Efficient Allocations of Irrigation Water and Nitrogen Fertilizer in Corn Production." *Journal of Sustainable Agriculture* 24(2004):97-111.
- Wang, Q., E. Thompson, R. Parsons, R. Rogers, and D. Dunn. "Economic Feasibility of Converting Cow manure to Electricity: A Case Study of the CVPS Cow Power Program in Vermont." *Journal of Dairy Science* 94(2012):3937-4949.

³ Tentative list. It may change depending on the major of the registered students.